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Abstract

Finite difference or conventional conforming finite element methods currently used for the
analysis of rotating discs do not normally provide safe lower-bound predictions of the plastic burst
speed. It is of potential concern when developing a disc geometry if later in the detailed design stage
it is found to be structurally inadequate. This paper presents the development and illustrates the
performance of an equilibrium finite element that provides safe lower-bound predictions of the plastic
burst speed irrespective of mesh refinement. The element, which is termed the Lamé Finite Element,
offers engineers a safe design methodology and, through dual analysis, the possibility to quantify the
uncertainty in the burst speed prediction.

Keywords: Lamé Finite Element, Equilibrium Finite Element, Rotating Discs, Plastic Assessment,
Burst Speed.

Introduction

In designing the rotors of high-speed turbomachinery, the engineer is primarily concerned with
determining a disc geometry that has sufficient strength to withstand failure by bursting at the highest
foreseen over-speed condition. The failure of a rotating disc by burst is an extremely serious event
involving significant kinetic energy due to rotation being transferred to unconstrained disc fragments,
typically a small number of disc sectors, and associated shrapnel which then act as projectiles. The
avoidance by design of disc burst is a particular issue in aeroengines where the engine casing cannot
economically be designed to constrain the post-failure projectiles.

Figure 1: Images from an article in the Seattle Times [1].

Whilst, thankfully, rare, disc burst in aeroengines has occurred in commercial aircraft, typically
during take-off when the engine is most highly loaded. In a rather clearly written article published
on 4 November 2016 in the Seattle Times, Dominic Gates details one case of a disc burst in a GE
aeroengine of a Boeing 767 as it was taking off from Chicago [1], and some of these images presented
in this article are reproduced in Figure 1.

It is essential, therefore, that the engineer has robust analysis tools capable of predicting the burst
of rotating discs of fairly arbitrary disc geometries with accuracy. It is also the case where the disc
geometry is to be established through design-by-analysis that the tool is efficient so that a range of
geometries may be considered with minimal computational effort.

By dint of the blades, the disc should be considered as a three-dimensional cyclic-symmetric
model. It is traditional, however, to smear the loads of the blades over the entire periphery and adopt
a two-dimensional axisymmetric continuum model. A further reduction of dimensionality from two
to one is also generally acceptable where the disc exhibits symmetry about an axial plane and were

www.rscope.org/journals
Angus Ramsay.
© All rights are reserved

Citation: Angus Ramsay. A Lamé Finite Element for the Initial Design of Rotating Discs. Collect ] Mech Eng. Vol
1 (1) 2025; ARTO071.


http://www.rscope.org/journals

@Rrscope

Angus Ramsay

the plane-stress constitutive relations are valid as is normally the case for rotating discs. In this manner the disc
is represented as a line of variable thickness with only the radial and hoop stresses being considered. Such one-
dimensional axisymmetric continuum models are quick to generate and analyses and, as such, are ideal for the
initial design of rotating disc geometries. The features of the disc that are not captured accurately with such an
idealization don’t significantly influence the geometric design of the disc and can be dealt with at a later detailed
design stage. Some of the modelling options and idealizations are illustrated in Figure 2.

Axis of rotational symmetry

Axisymmetric (1D)

Axisymmetric (2D) i Plane of axial symmetry

This image illustrates some of the options for modelling a rotating disc from three-dimensional solid continuum models and two-
dimensional planar continuum models taking advantage of cyclic symmetry, through two and one-dimensional axisymmetric
continuum models. The solid and planar models can take advantage of cyclic symmetry. The two-dimensional axisymmetric
model may be reduced to half size by taking account of the plane of axial symmetry whereas the one-dimensional axisymmetric
model assumes this to be the case.

Figure 2: Modelling options for a rotating disc [2].

There exist closed-form linear-elastic theoretical solutions for the one-dimensional idealization the simplest
of which was presented by Lamé for discs with parallel sides, i.e., uniform thickness — see [3] for example.
Theoretical solutions have also been established for more complex disc geometries, e.g., tapered geometries
and the ubiquitous constant stress geometry. These have been presented in [4] and [5]. Although discs have
been designed using such solutions, geometric features such as balancing or sealing rings often mean that these
solutions cannot be used. In such cases the engineer resorts to numerical methods. In [5] the finite difference (FD)
approach is presented and it is the experience of the author, who worked in the turbomachinery industry for a
decade, that these approaches are still used.

As with all numerical methods, the FD approach produces an approximate solution whose convergent properties
are not always clearly defined. The more modern finite element (FE) method is also approximate but can be shown,
if the method is appropriately formulated, to converge to the theoretical solution with mesh refinement. For most
finite element systems, in particular the large legacy systems, the formulation adopted is based on conforming
displacements which leads, by definition, to compatible strains and is known as the conforming finite element
(CFE) formulation. The displacement shape functions are generally polynomial and are, therefore, particularly
unsuited to capturing the displacement variation in a rotating disc which, for the parallel sided disc, involves
rational terms in the radial ordinate. As such, significant mesh refinement is required for such a CFE model to
converge to the theoretical solution. The error in an unrefined CFE model manifests as a lack of equilibrium
between the applied loads and the internal stress field and tends to lead to approximations that produce unsafe
upper-bound predictions of quantities such as the burst speed. Thus, in order to achieve a result that can reliably
used in design, the engineer needs to undertake a process of solution verification [6], which enables extrapolation
to an estimate of the theoretical solution. Unfortunately, in the majority of commercial FE systems solution
verification is a manual process requiring not inconsiderable effort from the engineer which tends to detract from
the task in hand, i.e., the design of a structurally sound disc geometry.

Through a belief in common with his colleagues that the practicing engineer is better served using an
equilibrium finite element (EFE) formulation, the author has devoted a significant part of his career to the research,
development and application of such models. With an EFE formulation strong equilibrium is guaranteed ensuring
that predictions of the burst speed converge from below the theoretical solution. In this manner the solution from
even the crudest meshes are safe and the engineer can concentrate on the disc design comforted by the knowledge
that even without formal solution verification, the burst speed predicted by the model will lie on the safe side of
truth.

In this paper the Lame solution for parallel-sides rotating discs with a plane-stress constitutive relation is
used to construct a finite element stiffness matrix and load vector. The resulting element is one where both strain/
displacement compatibility and stress/load equilibrium are satisfied exactly and, in this sense, it is a Trefftz finite
element (TFE) formulation [7]. These elements can be assembled in the usual manner to provide models that
represent the true disc geometry in a piecewise uniform fashion.
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In contrast to a CFE model, which requires considerable mesh refinement to recover a reasonable approximation
to the linear-elastic solutions governed by the Lamé equations, the TFE model will recover the solution with a
single element. For this reason, the author has called this element the Lamé finite element (LFE).

Like rotating discs, pressure vessels are another safety critical component where LFE would provide a sensible
and safe alternative to conventional methods. Pressure vessels can burst in a ferocious nature particularly when
containing compressible gases — see Figure 3 which presents an image taken from [8].

Figure 3: Image of burst pressure vessels [8].

Much research has been undertaken into the advantages of pressure vessels formed of compound rings and
there are many published examples where the Lamé equations are laboriously written out for each ring and then
coupled with the appropriate continuity conditions. This approach probably comes from strength of material texts
where it is often presented as a method for such components — see for example [3]. A far tidier approach would be
to adopt a mesh of LFEs. Although not considered in this paper, the load vector for thermal body loads is simply
determined and the contact condition between adjacent rings can be handled efficiently using gap elements and an
iterative analysis. The first example shown in this paper illustrates the performance of an LFE model and compares
this to that of CFE models for a pressurized pipe or vessel.

Plasticity is considered in the examples presented in this paper. In determining the plastic limit load the
material is often idealized as an elastic, perfectly-plastic material model and this idealization will be used in this
paper. Strain-hardening could be included and would certainly be included at the detailed design stage. However,
for the initial design of disc geometry ignoring strengthening likely to be achieved through strain-hardening is
considered a reasonable conservative approach.

In modelling the plastic behavior of the disc material as the speed increases beyond that which causes first
yield, a number of numerical approaches may be adopted. As the plastic limit load or burst speed is unique then
this measure should be independent of the approach used. The common approach used in commercial FE systems
is the incremental approach [9]. Here the load is applied incrementally based on a linearized extrapolation of
the material state at the start of the iteration. After each increment an iterative approach is required to bring the
solution back onto the correct material state.

An alternative approach that exploits the strong equilibrium from EFE models is that of lower-bound limit
analysis. An example of this approach for plate elements is shown in [10]. In this approach a solution from a
linear-elastic EFE model is used as a particular solution. To this solution is added a set of self-balancing or
hyperstatic stress fields the amplitudes of which are determined in a mathematical program so as to maximize
the load factor whilst respecting the yield constraints. This approach has been successfully implemented for the
LFE model.

A third approaches the elastic compensation method (ECM) [11]. This is a very simple iterative approach that
is easily implemented in software. It is rather flexible in terms of the yield criterion adopted and has been used
to produce the plastic solutions presented in this paper. It is worth noting with regard to the material idealization
used in this paper that no strain limit has been accounted for in the solutions. The assumption made is that the
material has sufficient ductility to allow the plastic solution to fully develop. Whilst the materials used for real
discs is usually ductile, this property will have some limit and will certainly need to be formally checked at the
detailed design stage.

The two yield criteria generally adopted for ductile metals are the Tresca and the von Mises criteria. The work
of Taylor & Quinney [12], has demonstrated that the von Mises criterion provides a more accurate representation
of yield than the Tresca criterion — see Figure 4. The simplicity of the Tresca criterion, which is a conservative
linearization of the von Mises criterion, means that it is often used in the development of theoretical solutions — see
for example [13].
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Figure 4: Reproduction of results from Taylor & Quinney [12].

It is the case, as seen in Example 1, that even for a uniform thickness geometry where the elastic solution
is exact, mesh refinement is required to obtain an accurate prediction of the corresponding plastic solution. The
iterations required by the ECM are based on linear elastic solutions and so the solution at any stage of mesh
refinement and plastic iteration is an equilibrium solution and offers a lower-bound estimate of the burst load.

Following Example 1 a section is introduced to illustrate how the piecewise uniform thickness LFE model
provides predictable lower-bound solutions for disc geometries that are not parallel-sided but where the thickness
decreases monotonically with increasing radius. This feature is further demonstrated in Example 2 which shows
how an LFE model can accurately capture the solution for the well-known case of the uniform strength disc.

In Example 3 the analysis of a real rotor with blade loads is considered. Results from two elastic finite difference
(FD) methods have been published and the performance of an LFE model is compared with these results.

The practical advantages of the LFE method over the FD of CFE approaches means that a safe and reliable
tool could be developed for the design-by-analysis of rotating discs. An example of this technique is presented
in Example 4 where the geometry of the disc is modelled using a cubic Bezier curve. Two geometric variables
(position of the Bezier control points) are considered and design curves are produced and overlaid on a contour
plot of disc mass. Although relatively simply, this example demonstrates the relative ease with which a design-
by-analysis tool can be developed. It should be noted that this sort of tool could be developed into a real-time
analysis tool where the control points are moved around through user interaction with the mouse. Even though to
achieve full convergence in the earlier examples extremely refined LFE meshes have been used, with reasonable
computing power these models take only a few fractions of a second to complete.

In the discussion section consideration is given to the performance of burst predictions based on elastic rather
than plastic analysis. Criteria such as the Robinson Burst Criteria define the speed of burst as that when the average
elastic hoop stress reaches the ultimate strength of the material. This criterion gives an exact prediction for uniform
thickness discs but is approximate and unsafe for other non-uniform disc geometries. It is also the case that hoop
burst is not the only form that might occur in a rotating disc. Whereas hoop burst essentially requires the entire disc
to reach a plastic state, a form of failure called radial burst can and does occur in discs geometries where the web
between hub and rim is essentially parallel sided. The disc considered in Example 3 has the sort of geometry where
radial burst occurs. At a given radius the radial stress reaches yield which, at least for the Tresca yield criterion,
indicates failure around an annular ring of the disc. Again, the strong equilibrium achieved with an LFE model
ensures that this mode of failure is accurately captured.

Given that CFE and LFE models provide upper and lower bounds on the exact solution, the idea of dual
analysis to quantify the uncertainty in a particular solution is discussed. In this work it has been observed that the
stiffness matrix for the CFE element when using reduced integration is identical to that of the LFE element. This
means that with suitable modified post-processing of the CFE results the same solution obtained with an LFE
model can be obtained at minimal computation cost and without the necessity for reanalysis of the model.

In the final section of this paper, conclusions are drawn as to the utility of the LFE method for the practical
initial design of rotating discs and ideas for further developments are expressed.

The Lamé Equations

In this section the essential steps in the derivation of the Lamé equations are stated. The complete derivation
can be found in many standard and advanced texts, for example, see [14]. The geometrical parameters involved in
the representation of a rotating disc and the boundary terms are illustrated in Figure 5.
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Figure 5: Geometric definition and boundary terms for an LFE.

In this paper we consider a uniform thickness axisymmetric body defined in a cylindrical coordinate system,
¥, &. Boundary loading will be considered along with body loading due to a constant angular velocity, éw. For the
isotropic materials considered in this paper, the elastic properties of the material are defined by the elastic modulus,
E', and Poisson’s ratio, ¥, with the mass density of the material denoted by 2. In the absence of torque and angular
acceleration there are no shear stresses or strains and the two stress components of interest are the radial stress, @.
and the circumferential or hoop stress, @+ which have corresponding strains £ and £ respectively, these then

being principal values. The equations of equilibrium, constitution and compatibility for this axisymmetric problem
are given in Eq. (1).

o — 0 —T == prie’ Equilibrium (1a)
R 1 —] (0 N

{ . } =1 [_? 11] {Gh] Constitutive (plane-stress) (1b)

& = oy + T Compatibility (10)

Although a plane-strain constitutive relationship between stresses and strains may be appropriate for rotating
components with large axial thickness, e.g., a shaft, the plane-stress relation is universally considered appropriate
for rotating discs which have relatively thin axial dimensions.

Combining the three equations, Eq. (1), and recognizing the appropriate strain displacement relations leads to
the second-order differential equation given in Eq. (2) which can be solved for the radial displacement, 1.
@+1-9—%+(1—v2)-%:’=0 @)

dr?®  r dr

Th?}.amé equations, Eq. (3), give a solution to this differential equation in terms of the two Lamé coefficients,
a - . -
and ~. These coefficients are determined from the boundary conditions for the problem.

o‘,za—%—(3+v)%m (3a)
z,.2

Jh=a+%—('l+3v}% (3b)

u= g (o, —vo,.) (30)

Development of the Element Stiffness Equations

For a force-driven problem, with radial boundary forces, f; and f, at the inner and outer radii, 7; and 7,
the Laméco efficient may be determined from Eq. (4), whereEtransforms boundary forces into corresponding
internal stresses and is thus termed the Equilibrium Matrix.

6)==(F)

nn
rrd ?“fro] )

Whilst the matrix E is singular for an element with the inner node on the axis of rotation, i.e., », = 0, the inverse
of this matrix, E-1,may be written explicitly as shown in Eq. (5).
Lt 1/11
s 71/1"0} ©)

A similar expression can be written in terms of radial boundary displacements, 1; and i,, for displacement
driven problems as shown in Eq. (6), where € transforms boundary displacements into corresponding internal
strains and is thus termed the Compatibility Matrix

(s}=clu)

. T‘{(vf 1) 7’:"/(1‘71)
B T"/(v +1) ©)

In the absence of body and thermal loads, Eq. (4) determines the Lamé coefficients for a force driven problem
whereas Eq. (6) does so for a displacement driven problem. Whilst the vast majority of Lame problems are force

2mt(ri- r‘l-"‘}

E~1=2nt
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driven, one can conceive of other problems which are displacement driven or mixed problems. It is necessary,
therefore, to be able to identify a solution of the Lame equations that copes with the full range of possible boundary
conditions and such a general solution can be obtained by equating Eq. (4) to Eq. (6) as shown in Eq. (7). In this
manner the Lamé coefficients are eliminated leading to two equations expressed in terms of the two boundary
forces and displacements which may be solved for arbitrary boundary condition specifications.

Cu = Ef ]

A standard stiffness formulation with the stiffness matrix K can be derived from Eq. (7) as shown in Eq. (8).

El=Cu=f=Ku
K- 2Emt (L+vI®+ (1 —virf —2nr, ®
Tl —vHrE - —2nr, (1 —v)r? + (1 +v)rk

One of the properties of an element stiffness matrix is, according to the Maxwell-Betti reciprocal theorem,
that it should be symmetric, and this property is seen observed for the LFE. Since there are no rigid-body modes
of displacement associated with this element, the stiffness matrix is non-singular forr, = r;, and could be inverted
into a flexibility matrix if so desired.

Body Loading

This form of loading was neglected in the development of the stiffness equations in order to concentrate the
reader’s mind on the direct formulation presented. It is, however, simply included by adding the appropriate term
to the right-hand side of the stiffness equations. If body loading is included then the equilibrium equations of Eq.
(4) expands to the form shown in Eqg. (9).

{0} =Er -+
by =(3+7) %{” } ©
Allternatively, the compatibility formulation of the system of equations is as shown in Eq. (10).
{I}=cu+b,
Allternatively, the compatibility formulation of the system of equations is as shown in Eq. (10).
{I}=cu+b,
_ et [(v+DOF + D) 10
Pu="3 { (v —1)rfr? } (10)

As already shown, equating Eq. (9) and Eq. (10) eliminates the Lamé coefficients and pre-multiplying by £-*
leads to Eq. (11) which are the stiffness equations including the full set of boundary and body loading.

Ku=f+b
b=E*{bs—b,} (12)

The matrix E issingular whenr; = O but this singularity can be bypassed by expanding the expressions in Eq.
(12) symbolically as shown in Eq. (12).
b= L“-‘Tf{?‘}?‘f - Tia} (12)
2 d-rin,

Post-Processing & Results

The stiffness equations for a single LFE element are assembled in the usual manner to form the structural
stiffness equations for the disc, the solution to which comprises the nodal displacements. The nodal forces that hold
each element in equilibrium with respect to the applied loading are simply recovered using the nodal displacements
in the stiffness equations for the element and the internal stresses and displacements can be recovered using Eq. (3)
once the Lamé Coefficients for an element have been evaluated using either Eq. (9) or Eg. (10).

The radial, @, and hoop stress, Trare principal stresses. It is common, for the sort of ductile metals used
for rotors, to adopt the von Mises yield criterion as the failure criterion. For this yield criterion the so-called
‘equivalent stress’, Sg, is given by Eq. (13c) and the maximum principal stress and Tresca criterion which will also
enter into the discussion are expressed in Eq. (13a) and Eq. (13b) respectively.
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Yield Criterion Expression
Maximum Principal Stress max {abs(a,,], abs(o‘h}} (13a)
Tresca max {abs(o,. — &;,),abs(z,.), abs(cy, )} (13b)
5 5 17z
Von Mises (62 + 0 —0,0n) (13c)

A linear-elastic solution is only valid if the maximum value of the equivalent stress in the rotor is less than or
equal to the yield stress, 5y, this usually being determined from a uniaxial tensile test. The maximum equivalent
stress, 5, occurs at a point termed the “critical’ point or radius. When discussing and plotting yield diagrams it is
common to work in terms of normalized principal and equivalent stresses. The normalization involves dividing by
the yield stress and normalized quantities are indicated with the tilde, so, for example, the normalized equivalent
stress at a particular point would be 5z = Sz/Sy. The maximum normalized equivalent stress is given the symbol $&.

An engineer designing a rotor would typically need to ensure that the maximum equivalent stress at the
operating or design speed, @4, is below some prescribed design stress. Note that the analysis is generally undertaken
at the design speed. At the detailed design stage, the design stress will typically be based on considerations of
fatigue/creep failure and is likely to be a fraction of the yield stress for the material.

At the initial design stage, however, the disc will generally be designed based on the plastic burst speed, ®»
, which is the output of a plastic analysis. A non-dimensional plastic load factor, 45, may be defined as given in
Eq. (14).

7= (%) (14)
The elastic limit speed is often also of interest, £z as the speed at which first yield occurs and the corresponding
elastic load factor is defined in Eq. (15) where the manner in which J is calculated based on the elastic stress is

shown.

_s_ 1 _ (@)’
As = g fp (md) (15)
Despite the seemingly counter-intuitive idea that stress measures from an elastic analysis might be helpful in

the prediction of plastic burst, such metrics have and are still used in the early design stages of a rotating disc.
These stress metrics are shown in Eq. (16).

7y = i [ondA Average (elastic) hoop stress (AHS) (16a)
&, = max(g, ) Maximum (elastic) radial stress (MRS) (16h)
The predicted burst speed associated with the stress metrics given in Eq. (16) are provided in Eq. (17).
[oe
taps = Wy -\,II% (17a)
[5y
Wyyrs = Wg |7
NEr (17b)

In addition to point displacements and stresses, there are some additional model metrics that are useful when it
comes to the design of rotors. Obvious candidates here are the mass and inertia of the rotor as one of these will tend
to be the objective function in a design scenario. Another useful measure is the utilization, /. This is a measure of
how well the capacity of the rotor is being used and lies in the range 0 = U = 1. It can be considered as a pointwise
quantity defined as 5z/Sy or, perhaps more usefully, as an average value for the entire rotor as shown in Eq. (18)
where 4 is the area of the rotor generatrix.

U=3/Zaa (18)

A°Y By

This quantity can be evaluated for the elastic and plastic limit solutions and will be identified with the
appropriate subscripts, i.e., U, for the average utilization at the elastic limit and U, for that at the plastic limit
speed. For the so-called ‘uniform strength’ disc geometry, the elastic and plastic utilizations are unity, i.e., the
full available capacity of the rotor is being utilized — see Example 2. For most rotors, however, the average elastic
utilization will be less than unity, and sometimes considerably less than unity. Plastic redistribution will generally
increase the average utilization and depending on whether or not the full rotor can be utilized in this manner the
average plastic utilization can often reach unity even when the elastic value might be significantly less than unity.

Example 1: Pressurized Thick Cylinder

A thick cylinder shown is defined with r; = 0.1m and r, = 1m. The internal and external pressures, are,
respectively, P: and P.. Two load cases are considered as defined by the Lamé coefficients @=100kPa, &0,
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(LC1), and @=0, b=100kN, (LC2). Using an elastic modulus of 200GPa, Poisson’s ratio of 0.3, an axial thickness
of 0.01m and a plane-stress constitutive relationship, the radial and hoop stresses are as presented in Figure 6.

75 “
08 Uia\
50 \
E g \_
-] s
£ = oo
& o4 & s
50
02 a,-{
o =|on 75 ,,
00 100

00 0.2 0.4 06 o8 10 0.0 02 04 06 08 10
Radius, (m) Radius, [m]

Figure 6: Radial and hoop stresses (elastic) for pressurized thick cylinder.

For LC2 we see quite clearly one of the properties of the Lamé equations in the absence of mechanical or
thermal body loading, namely, that the sum of the radial and hoop stresses at any point is equal to twice the first
Lamé coefficient, i.e., @, + a;, = 2a, where, in this case, a = 0.

Using the axisymmetric shell from a commercial CFE system and with the bending part of the element switched
off, the exact solution for LC1 is recovered with a single lower or higher order CFE element. This is not surprising
since the exact stresses are constant with respect to radius. For LC2, on the other hand, the CFE element which
even with the higher order element only has linear stress capability, struggles to simulate the 1/rZ term present
for both the stresses in the closed-form solution as shown in Figure 7. For both lower and higher order elements a
significant number of elements are required before the asymptotic region of uniform convergence rate is reached.
Both elements underpredict the exact stress and by significant amounts for coarse meshes and this could lead to a
potentially unsafe design were the engineer not to detect the poor quality of the result.

Elastic Plastic

]

SFE - Lower-Order

CFE - Lower-Order

5

CFE - Higher-Order

CFE - Higher-Order

Percentage Error in Stress at Inner Radius
Normalised Plastic Collapse Load

e

0
a 16 64 256 1024 1 2 4 8

Number of Elements Number of Elements

Figure 7: Convergence of elastic stress and plastic load factor for LC2.

The LFE recovers the exact elastic solution for both load cases and provides a safe and accurate prediction of
the plastic collapse load.

Bounded Nature of the LFE Stresses

The LFE satisfies all the governing equations internally and both equilibrium and compatibility between
elements. The element is exact provided the thickness of the rotor is uniform. If the thickness is not uniform then
a mesh of uniform thickness LFE elements may be used with each element taking on the average thickness of the
actual geometry at the two ends of the element. The LFE solution remains exact for the idealized, elementwise
or piecewise uniform thickness geometry but is only an approximation to that for the exact geometry and mesh
refinement will be required to converge towards the exact solution.

It is also the case that even if the actual geometry has uniform thickness, then the plastic solution obtained
using the ECM will generally be approximate and require mesh refinement to converge towards the exact solution.
For this case, where the actual geometry has uniform or even piecewise uniform thickness, the elastic solutions
are exact and, provided the equivalent stresses remain within the yield criterion then the lower-bound theorem
of plasticity can be invoked. The plastic limit load will then be a safe, lower-bound prediction of the exact value.
This behavior was observed in Example 1 where it was seen in Figure 6 that the plastic collapse load converged
towards the true value from below.

It is the case then that for a typical rotor, which will have an arbitrary but non-uniform thickness variation, a
mesh of LFEs will be required to capture the true solution. If the mesh is not adequate then the elastic solution will
be exact and the plastic solution safe but only for the elementwise uniform thickness idealization. In general, this
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approximate solution might not be a bound on the solution for the exact geometry. However, for rotor geometries
which are normally convergent, i.e., the thickness decreasing with increasing radius, it may be argued for the
idealized geometry, which attracts greater centrifugal loading than the exact geometry, that the stresses will
normally be greater than those for the actual geometry and, as a result, the bounded nature of the idealized LFE
solution holds.

A convergent, tapered geometry is shown in blue in Figure 8. The figure also shows the idealization of this
geometry with a single LFE with uniform thickness equal to the mean thickness of the tapered geometry.

b
05 m Centrifugal Load Ratic

T

Auial Position, [m]
=

Centrifugal Load Ratio

Radial Position, [m]

Figure 8: Centrifugal load ratio for a single LFE.

If it can be shown that the centrifugal loading at all radial positions is greater for the idealized uniform
thickness geometry than for the actual tapered geometry then it is reasonable to expect the same for the stresses.
From the figure it is evident that the centrifugal loading at radius, T, due to the material between this radius and the
outer radius, T, is going to be different for the idealized geometry than for the tapered geometry. For 7 = T the
centrifugal force for the idealized geometry, C; will certainly be greater than that for the actual geometry,C, i.e.,
the centrifugal load ratio C;/C> unity. As the radius is moved below the mean radius towards the inner radius then
the ratio will decrease. However, even though the difference in areas in the generator plane between the idealized
and actual geometries are identical either side of the mean radius, the mass and centrifugal load developed by the
area to the left of the mean radius are smaller than those to the right of the mean radius. As such, the centrifugal
load ratio remains greater than unity at the inner radius. This means that for all radial positions in the uniform
thickness LFE, the body loading is greater than that for the actual convergently tapered geometry. The centrifugal
load ratio has been included in the figure and demonstrates the form of behavior described.

Although the previous analysis would indicate that, because the centrifugal load ratio is greater than unity
over the complete radial dimension of an LFE, this alone does not guarantee the LFE stresses will be greater than
those for the actual geometry. What is missing is the influence of the radial stress resultants applied to the ends of
the elements.

For the LFE model, the actual radial force is applied to the ends of the model, e.g. due to the blade load, so that
the radial stress resultants are correct. Clearly, though, the radial stress will not be correct as the axial thickness
for the LFE is different than the true value. Thus, one would expect that the radial stress at the outer radius of an
LFE will be less than the true value whereas the same stress at the inner radius of the element will be greater than
the true value. This idea can be demonstrated through an example.

Example 2: Uniform Strength Rotor

The case considered here is that of a uniform strength rotor the thickness distribution for which is given in
Eq. (19), [14].

—pia Ty

t=t,e zo (19
The values for the quantities defined in Eq. (19) used for this example are given in Table 1.

Table 1: Parameters defining uniform strength rotor

Quantity Value
5 [m] 0.0
o [m] 0.2
to, [m] 0.2
2, [kg/md] 7800
< | [rad/sec] 2000
T [MPa] 275
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Although with the uniform strength disc the thickness profile is now curved, the degree of curvature is not

significant so that whilst not strictly true, one may adopt the same argument used for the tapered geometry
particularly as the LFE mesh is refined.

LFE solutions will be considered for meshes of 1, 2, and 4 LFE elements. The radial force stress resultants for
the three meshes considered are compared, in Figure 9, with those for a mesh of 256 LFESs — this being very close
to the theoretical solution for the problem.

Raclal Stress Resultant, [MN]

000 002 084 006 008 00 012 014 016 018 020
Radial Pasition, [m]

Figure 9: Radial stress resultants for LFE meshes.

The stress resultants at the ends of the model where the static boundary conditions are applied are exact for all
LFE meshes. Between the ends the stress resultants for LFE meshes are greater than the true values with minimum
difference being observed at the internal nodes.

Thus, one would expect that the LFE stresses exceed those for the true geometry. This, however, is not the case
as, at the outer radius of an element, the thickness is greater than the actual value. As such, the predicted radial
stress will be less than the true value. At the inner radius of the element the opposite is true and the radial stress at
this position will be greater than the true value. This point is demonstrated in Figure 10 where the equivalent stress
is plotted as a function of radius for the meshes considered.

Equlvalent Stress, [MPa]
g
|

0
0.00 002 004 006 008 010 012 014 016 018 020
Radial Position, [m]

Figure 10: Equivalent stresses for LFE meshes.

Although the stresses from the LFE model do go below the theoretical solution particularly at the outer radius

of each LFE, the maximum stresses for a given mesh, as indicated in the figure with red circles, remain above the
theoretical value.

On the basis of the above analysis, it is reasonable to assume that for convergent rotor geometries that the
maximum elastic stress is greater than the theoretical value and, therefore, leads to a safe bound for the elastic
load factor. The convergence of the elastic load factor with uniform mesh refinement is shown in Figure 11. The

rate of convergence for selected segments has been added to the figure with refinement appearing to lead to a unit
convergence rate.
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Figure 11: Convergence of the error in elastic load factor for LFE meshes.

Example 3: Analysis of a Rotor

The example chosen here comes from Chapter 12 of [5] which deals with numerical methods for discs of
arbitrary profiles. The disc geometry, material properties and loading are provided in Figure 12.

Fig. 8.1 Variable profile disk and breakdown into eight partial disks having constant thickness
(projection lines are omitted)

Table 8.1 Geometry of constant-thickness partial disks, operating conditions and material

properties

E = 2.1:10° GPa v = 7.800 kg/m”

v = 0,30 w = 314 rad/s

rfo.05m @, = 10 MPa

y O.lm ay =0

Partial disk Inner radius (m) Outer radius (m) Thickness (m)
1 0.100 0.125 0.100
2 0.125 0.150 0.070
3 0.150 0.175 0.050
) 0.175 0.200 0.035
s 0.200 0.250 0.025
6 0.250 0.350 0015
7 0.350 0.450 0.010
8 0.450 0.500 0.025

Figure 12: Rotor problem considered for analysis [5].

Two FD methods are presented in the text, these are the Timoshenko-Grammel Method, [15,16], and the
Manson Method, [17]. Stresses for both methods are presented for the piecewise uniform or stepped thickness
idealisation of the disc in Figure 13.

Stepped Idealisation Continuous Idealisation

Mass=128.1kg Mass=131.6kg

¥ o) € )

Timoshenko — Grammel (Stepped) — Timoshenko — Grammel (Stepped)
_____ Manson (Stepped) = == = = =  Manson (Stepped)
LFE (Stepped) LFE (C

Figure 13: Principal stresses from LFE compared with other numerical approaches [5].
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The stresses from the numerical methods presented in [5], differ by about 7% in the regions where the stresses
are maximum depending on the method adopted. It is clear that they do not satisfy equilibrium exactly as this
requires a step change in the radial stress across the interfaces of the stepped geometry. The exact elastic stresses
obtained using LFE have been superimposed on the figure. It is interesting to note that Manson’s FD method
agrees well with the LFE stresses if average values are taken across the stepped interfaces.

In addition to the stepped idealization, a continuous idealization has also been considered using LFE. No
results are available for this idealization from the FD methods and so the LFE results for the continuous
idealization are overlaid on the FD results for the stepped idealization. The LFE model adopts a mesh of 20
uniform thickness LFES per segment, i.e., 160 elements in total.

The radial stress for the continuous idealization of LFE between r=250 and 350mm appears flattened when
compared to the results of Manson or Timoshenko-Grammel. However, the result was checked using CFE and
found to be correct. The flattening is therefore taken to be an artefact of the way in which the stepped idealization
was crudely converted to a continuous one, i.e., the curve is only Cg continuous.

The equivalent stress as a function of radius for both the elastic and the plastic limit loads are shown in Figure
14 together with the corresponding load factors and utilizations.

Stepped Idealisation Continuous Idealisation

Ay =3.68; U, =81% Ay =419}, = 95%

malised Equivalen

2, =336; U, = 74%

2,=3.19; U, =70%

Figure 14: Equivalent stresses, elastic and plastic, for the rotor.

The continuous idealization of the rotor moves the maximum stress from a radius of about 0.35 to the inner
radius and pushes up the elastic load factor in the process. The continuous idealization is also better able to
redistribute the stresses than the stepped geometry as indicated by the increased plastic utilization and the enhanced
burst speed which increases from 602 to 643 rad/sec — c.f., Eq. (17).

The normalized elastic and plastic principal stresses are shown in the von Mises yield surface in Figure 15. The
curves plot the equivalent stresses from the inner radius to the outer radius of the rotor where the inner radius can
be easily identified as the radial stress is zero. The black curves are the elastic solutions and the colored curves
the plastic solutions. All curves have a critical point where the equivalent stress just touches the yield surface, the
stress at all other radii lying within the surface.

Stepped Idealisation Continuous ldealisation

Normalised Hoop Stress, &),
Normalised Hoop Stress, d),

Normalised Radial Stress, G, Normalised Radial Stress, 6,

Figure 15: Principal stresses in the von Mises yield surface.

Given that actual rotor has a continuous and smooth thickness profile then the results for the continuous
idealization produced using LFEs is likely to be closer to the solution for the actual rotor than that of the stepped
idealization. It is both interesting and curious that the stresses from the two FD methods presented in [5], which
are apparently based on the stepped idealization, are, for the most part, in good agreement with the LFE results for
the continuous idealization.

Example 4: Design of a Rotor

Whereas analysis of a rotor requires the engineer to determine the structural metrics of interest for a
predetermined rotor geometry, design involves finding feasible rotor geometries for which the structural
metrics
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satisfy the required performance criteria. There will generally be a range of such feasible rotor geometries and
selection from these might be made on the basis of minimum cost which for a rotor would typically be equivalent
to minimum mass. This then defines a formal constrained optimization process.

In the initial design stage, the engineer will be interested in determining a rotor geometry which has sufficient
fatigue life for the duty of the rotor and sufficient burst margin for the machine. Fatigue life and burst margin are
quantified using the maximum elastic stress, i.e., the elastic load factor, and the plastic load factor. Both these
quantities are determined in a conservative manner for LFE models making this approach ideally suited for the
initial design of rotors. There will, of course, need to be further detailed design work undertaken on the rotor to
deal with a range of additional matters such as stress concentrations around the hub/web the rim/web interfaces and
any holes incorporated in the rotor, addition of rings for sealing and balancing purposes and, importantly for high-
speed turbomachinery, dynamic considerations, e.g., vibration resonances. These are generally considerations
dealt with once an initial structurally feasible design has been established and are not considered further in this
paper.

A design program for the rotor would require, primarily, a method of idealizing the geometry in terms of
geometric variables. For a given set of values for these variables, a sensibly refined LFE model could then be used
to establish the elastic and plastic load factors together with the mass of the rotor. This could then be used as the
calculation engine for a constrained optimization algorithm to seek out the particular set of geometric variables
that minimizes the mass of the rotor. In this example such an algorithm is not used and, instead, the design process
will be presented as an exploration of the design space which is then characterized using contours of load factor
superimposed on contours of rotor mass.

A rotor similar to that analyzed in the previous section of this paper will be used as a candidate for design
optimization. The rotor geometry will be defined using a single cubic Bezier curve constrained to have two
geometric variables as shown in Figure 16 where the rotor design problem is defined.

0.15

o
n

0.05

Total mass of blades

o

Range, [mm]

-0.05

Axial Position, [m]

110 < g, < 365

s
i

5<g,<100

-0.15
T 0.2 0.3 0.4 0.5 0.6

Radial Position, [m]

Figure 16: Rotor design problem.

Meshes of 20 LFE elements were used to analyses the rotor for the two geometric variables in the range
specified in Figure 16. The mass together with the elastic and plastic load factors were recorded and have been
plotted as contours in Figure 17.

9z

m=59kg m=59kg,

Figure 17: Rotor design solutions.

The filled color contours represent the mass of the rotor whilst the elastic load factor is shown as blue lines
and the plastic load factor as red lines. Having constructed a graph of the form of that shown in Figure 17, the
design engineer can very simply select designs of minimum mass for his/her particular choice of elastic and plastic
load factors. Two design points are considered numbered 1 and 2 with red ellipses. From Eq. (17), and given that
the design speed, i, is 314rad/sec, the elastic and plastic limit speeds are for design point number 1 are 344 and
372 rad/sec respectively. For a yield stress, 5y of 275MPa, the maximum equivalent stress at the design speed
is also determined from the same equation as 229MPa. Similar calculations can be undertaken for design point
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number 2 which has a larger plastic limit speed.
Discussion

It is common practice in industry to base the prediction of the burst speed on the average hoop stress from a
linear-elastic analysis. The nature of rotating discs is that both the hoop and radial (principal) stresses are
normally positive throughout the disc. It is also the case that for many disc geometries the hoop stress dominates
the radial stress, i.e., o = o, for n =7 =1, In these situations, a yield criterion such as the maximum principal
stress criterion or the Tresca criterion will only involve the hoop stress and it is, therefore, seemingly reasonable
to take the average elastic hoop stress as metric for the estimation of the plastic burst speed.

Early research involving the measurement of the plastic burst speed of rotating discs was undertaken by
Robinson, [18]. Parallel-sided discs of a variety of materials were considered and the results are shown in Figure
18. In the burst criterion named after him, Robinson equated the average hoop stress to the material ultimate tensile
strength (UTS) to determine the speed at which the disc was predicted to burst. The results illustrate that whilst this
criterion might predict the upper limit for the burst speed, the majority of discs fail at a lower speed. If, however,
the UTS is replaced with the yield stress then, with the exception of a single out-ridder, a seemingly reliable lower
limit is obtained.

-+----{ Robinson Burst Criterion using UTS

First stress reaches UTS

Robinson Burst Criterion using estimated Yield stress

First stress reaches yield

Figure 18: Measured results from NACA burst experiments [18].

Research undertaken later in provided the theoretical solution for the plastic burst speed of parallel-sided discs
constrained by the Tresca yield criterion [13]. The theoretical solution agreed with the approach postulated by
Robinson, i.e., that burst of a parallel-sided disc may be predicted using the average elastic hoop stress.

Clearly, using the average elastic hoop stress as a burst metric, whilst attractive in that a formal plastic
analysis is not required, does have its limitations. Firstly, assuming that the von Mises yield criterion is a more
suitable predictor of yield than Tresca and that the von Mises criteria circumscribes the maximum principal stress
and Tresca criteria, adopting this approach will add a layer of conservatism to the burst prediction. Rather like
neglecting the strengthening phenomenon of strain-hardening, this additional conservatism might be considered
useful at the initial design stage. Secondly, there are disc geometries where the required dominance of the hoop
stress does not hold. The disc used in Example 3 is one such case and in these circumstances, failure will be
through radial rather than hoop burst.

Let us first consider the case of a conical disc which does have the required hoop stress dominance and confirm
whether or not the equivalence between the prediction of plastic burst based on the average elastic hoop stress with
that predicted using the Tresca yield criterion holds. The conical disc possesses a theoretical linear-elastic solution
which is presented in [5]. Graphical results are presented for the displacements and stresses with a particular
conical form. Although the LFE software has already been verified in the main body of this paper, c.f., Examples
1 & 2, software verification will first be undertaken on the example shown in section 6.63 (p127) of [5].

The thickness variation as a function of the radial ordinate, -, for a conical disc is given in Eq. (20) where
the symbol & represents the axial thickness and the indexes I andzindicate the inner and outer radial positions
respectively.

t=p, T, (20)

Yo

The theoretical linear-elastic solution for rotating conical discs is presented in chapter 6 of [5]. Figure 6.11

of that reference presents the solution in terms of stresses and displacement for the particular conical geometry

shown in Figure 19.
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Figure 19: Conical disc example taken from section 6.63 (p127) of [5].

Drawn to Scale

The material for the disc is assumed to be a steel with E=204GPa, 1'=0.3 and 2=7800kg/m?. The results in
[5] are presented for an angular velocity of ¢=314 rad/s but only in graphical form. As such, a formal numerical
verification cannot take place. Instead of this a graphical approach will be adopted whereby LFE results are
superimposed on those presented in [5]. Such results are presented in Figure 20 for a meshes of 4 and 1024 LFE
elements.
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Figure 20: Elastic stresses from LFE overlaid on those of the analytical solution.

The agreement between the elastic stresses from the LFE model and the theoretical distributions shown for the
refined 1024 element model is seen to be excellent as expected.

For the plastic analysis, a yield stress of 5,=500MPa was taken. The number of elements, "= used in the mesh
wasne = 2™ with 0 = m = 10 and uniform mesh refinement was adopted. The convergence and yield plot for both
conical and uniform thickness discs are shown in Figure 21.

Conical Uniform Thickness (0.015m)

Angubar Velocity, | rad/s]
F]

Convergence

H

i
k

Yield Surface
[ —
-

Figure 21: Convergence and yield for conical and uniform thickness discs.

Submit your Manuscript | https://rscope.org/journals Collect ] Mech Eng - ART0071 - Page - 015



@rRscope

Angus Ramsay

Considering first the uniform thickness disc then the burst speed approximations based on the elastic analysis
are, as expected, exact for the single element and do not change with mesh refinement. The plastic burst speeds
based on the Tresca and von Mises criteria converge as expect from below the true solution with the result for the
more conservative Tresca yield criteria below that for von Mises.

Richardson Extrapolation (RE), [19] is a commonly used method for determining an estimate of the exact
value of a quantity of interest from a series of results obtained from successive refinements in a numerical method
such as the FE method. It is often used in solution verification, [6]. The method is outlined in Eq. (21) for the
quantity of interest . Three estimates of ¢ are required from successive meshes, i.e., @m-2, @m-1 and @m to
produce the estimate g, The first step is to determine the rate of convergence, &, which is then used to predict
the estimate as shown in the equation.

~ Pm—2~ Pm-1

Pm = Pm-1— 2,;_1
_ log{lem—c—em—d/ lom—s—@ml] 1)
a= los(2)

The numerical results for the conical disc are shown together with the values from RE in Table 2.

LFE Limit Speed Estimates, [rad/s] RE for Plastic (Tresca) RE for Plastic (AHS)
m Elastic  Plastic (Tresca) AKS Plastic (Mises) Convergence Rate  Estimate, [rad/s] Convergence Rate Estimate, [md/s]
0 4927603 armaras 54816138 a78a7ae \ \ \ \
1 530.3377 5344208 632.9621 5353081 \ \ \ \
2 593.88%0 5754733 6611074 99,3490 0.8466 616.5258 15912 689.2526
3 621.3304 6115506 668, 7505 640.8733 0.1864 647.6279 1.8807 676.3936
) 6333187 637.5323 670.7030 663.2901 0.4736 663.5140 1.9688 672.6556
s 6386677 652.0070 671.1958 6747940 0.8440 666.4817 19921 671.6847
6 641.2347 659.8208 6713167 680.6551 0.85% 667.6347 1.9380 671.4396
7 642.4795 663.8724 671,3475 6836064 0.9476 667.9239 1.9995 6713782
8 643.0963 6659373 671.3551 685.0872 09724 668.0022 19999 671.3628
9 643.4043 666.9797 6713571 685.8289 0.9861 668.0222 1.9999 6713590
10 6435578 667.5036 671.3575 686.2001 0.9928 668.0274 20003 671.3580

R \ A
L Y.
0.50% 0.50%

0.00%

Table 2: Numerical results for conical disc.

As the mesh is refined, i.e., m increases the rates of convergence tend towards the theoretical values of g=1 and g=2 for the
Plastic Tresca and AHS results respectively. The differences between the raw LFE results and the estimates of the exact values
is small giving reassurance that the difference between the estimates for the Plastic Tresca and AHS results is realistically non-

zero. It is noted that the estimate for AHS is greater than that for Plastic Tresca and can therefore be considered as unsafe.

It is seen that the rate of convergence tends towards one and two respectively for the plastic burst speed and
for the AHS estimate of the burst speed. The estimates of the exact values obtained by RE enable an estimate of
the error in the LFE quantities to be determined. It is seen that the error is about 0.5%. Using again the estimates
of the exact values it is seen that there is a difference of 0.5% with the AHS value being greater than the plastic
value using the Tresca criterion. This was indicated in the graphical results of Figure 21. For the uniform thickness
disc, the results are presented in Table 3 where it is seen that the difference between these quantities is insignificant
reinforcing the veracity of Robinson’s burst criterion for uniform thickness discs.

LFE Limit Speed Estimates, [rad/s] RE for Plastic (Tresca) RE for Plastic (AMS)

m Elastic Plastic (Tresca) ANS Plassic (Mises) Convergence Rate  Estimate, [rad/s] Convergence Rate Estimate, [rad/s]

o 4927603 4784784 5481613 4/Rarss \ \ \ \

1 492 7603 452 3081 5481613 4702005 \ \ \ \

2 492 7603 ABSISIS 5481613 5140281 - - - =

3 492 7603 5119862 54516138 5408617 0.35%0 5381849

4 4927603 5285258 5481613 5556224 0.6595 545.1053

5 492 7603 537.9169 5481613 563 3185 0.8200 547.3080

6 492 7603 542 9260 5481613 567.2612 0.5067 5479352

7 492 7603 545 5146 5451613 5681553 09524 5481031

L] 492 7603 546 8306 5481613 5702579 0970 5481466

? 492 7603 547 4941 5481613 5707606 05879 5481577

0 492 7603 5478273 5481613 5710123 0.9939 5481604

e |
0.06%
0.00%

Table 3: Numerical results for uniform thickness disc.
As the mesh is refined the rate of convergence tend towards the theoretical unit value for the Plastic Tresca result. The LFE model
provides exact values for AHS independent of the level of mesh refinement. It is noted also that the non-monotonic convergence
seen for the first three meshes prevents the calculation of the RE estimate for the Plastic Tresca quantity of interest. In contrast
to the conical disc, for this uniform thickness disc the difference between the estimates for the Plastic Tresca and AHS results is
realistically zero and is in agreement with the result of [5].
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This comparison provides a numerical example demonstrating that the Robinson criterion has restricted
validity and that it can unsafely overpredict the correct plastic burst speed. Whilst the difference shown in this
example, at 0.5%, is small in the overall scheme of engineering approximations, it would be interesting to consider
at a future date whether this is always the case for discs of other geometries.

It was suggested earlier that there are two modes of failure for a rotating disc. These were identified as hoop
burst and radial burst. The disc in Example 3 is of such a geometry that radial burst is the governing mode and
this could have been predicted from the yield curves of Figure 15. This example has been reconsidered using now
the Tresca yield criterion and a more refined mesh of 8 x 1024 = 8192 LFE elements. The results are presented in
Figure 22 and Table 4.

Convergence Yield Surface
675

Wans

650
Wpvon Mises

625 \
20 elements per segment, 643 rad/s

wpTresca
600

w,
575

Angular Velocity, [rad/s]

m ssaedi o sress

550
1 2 3 a4 s 6 7 '8 9 10

Mesh Index, (m)

Mormuted adia Stress

Figure 22: Convergence and yield for rotor of Example 3.
The yield curve of Figure 22 shows clearly that full yield is only developed at a single point. The difference between elastic and
plastic curves also indicates significant stress redistribution has occurred during the plastic analysis.

LFE Limit 5 pewd Estimates, [rad,/s] RE for Flastic (Tresca) RE for Plastic (AHS)
m Elastic  Plasthc (Tresca) AHS Plastic (Mises) Comvergence Rate  Estimate, [rad/s] Convergence Rate  Estimate, [ /fs]
-] 550, 3983 5505212 [SEREE 595 0680 \ A \ Y
1 574 8636 SH2. 2870 6513652 6193179 ! A \ !
2 5754553 596.1185 E51. 8379 632 2584 o718 605, 500 1.9922 652.310%
3 5756035 6035662 E51 9562 B3R 9621 08931 6110139 1.99680 652.074%
4 S5 G 02275 51 9858 G2 3435 10284 (SR 1.9995 G52.0154
[ ] 575 G498 09,0251 6510032 E44 0367 10263 GA0E22T 1.0999 52,0006
L] 575650 B09.9165 6519950 Gedd BRIS LO118 6208080 2.0000 651.9969
T 5756527 6103605 E51.9955 45 3058 L0057 B0 E04S 1.9999 651.9959
] 5756525 6105826 6519956 B45.5172 0393 6105047 2.0000 651,59557
L] S5 6525 6106935 651 0056 645 G220 1.0020 G0 8088 2.0000 65199646
10 5756580 B0 FaEs £51.9956 BAS6TEY 1. 0004 BI0.804% 1.8851 651.9956

A

0.00%

Table 4: Numerical results for disc of Example 3.

As the mesh is refined the rate of convergence tend towards the theoretical values for both the Plastic Tresca and AHS results.
From the RE estimates of the exact values of the Plastic Tresca and AHS results it is seen that the LFE model is well converged.
It should be noted here that whereas for other examples the mesh index, m, referred to the complete disc, for this model it refers
to each of the eight segments. In the example, a mesh of 20 elements per segment was used which corresponds to a mesh index
between 4 and 5. Taking the lower value, m=4, itis determined that the Plastic Tresca prediction of the burst speed is about 0.6%
below the estimated exact value, i.e., well within the level of accuracy required in an engineering analysis.

The convergence plot in Figure 22 shows the burst speed prediction from the average elastic hoop stress but
this is invalid since radial burst is the mode of failure for this disc. Convergence of the burst speed prediction made
on the maximum elastic radial stress is presented in Figure 23. This quantity converges to a value significantly
below the true plastic burst speed for the Tresca criterion (3.4%). The poor correlation between the prediction of
burst based on the maximum elastic radial stress and the true plastic value is likely to be due to the significant
stress redistribution noted earlier.

Predictions of the burst speed made from the results of an elastic analysis remain in use today for the initial
design of rotating discs albeit with a generous safety factor presumably included to account for any uncertainty,
see [20] for example. This might be considered surprising in that the theory of plasticity and FE systems capable
of modelling plastic materials have long been available. It might be the case that plastic analysis has not been
universally embraced because of lack of experience with plastic methods which are significantly more involved.
The sort of experience required could be achieved by engineers having access to a design tool based on the LFE
formulation and to use this to produce plastic solutions with which to compare with those generated from their
preferred FE system.
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Figure 23: Convergence of elastic predictions of burst speed for disc of Example 3.

Conclusions & Further Work

The research presented in this paper extends the family of equilibrium finite elements (EFE) already available
for safe structural design through plastic solutions that satisfy the lower-bound theorem of plasticity. Rather than
approaching the formulation through the usual theoretical manner, a more direct approach has been used where
the stiffness equations have been derived directly from the Lamé equations. In this way the element formulation
might be better understood by practicing engineers who would normally be familiar with the Lamé equations but
not necessarily so with FE theory. For this reason, the element has been called the Lamé Finite Element (LFE).

The LFE provides exact elastic solutions for rotating discs whose geometry is uniform of piecewise uniform
thickness. For discs with smooth non-uniform geometry the piecewise uniform idealization offers a lower-bound
solution which converges rapidly with mesh refinement. For plastic solutions the elastic compensation method
(ECM) has been adopted which iteratively modifies the elastic modulus based on elastic analyses. Since, at the
end of each iteration, the stresses are in strong equilibrium with the applied load, then provided the yield criterion
is respected, the solution is a lower-bound to the exact solution.

These properties should make LFE models very attractive to the practicing engineer who might currently be
using finite difference (FD) tools or those based on the conforming finite element (CFE) formulation. Neither FD
and CFE methods possess the lower-bound property of LFE and for coarse meshes are likely to produce unsafe
predictions of the burst speed. This imposes the requirement of undertaking solution verification on the practicing
engineer and for most commercial systems this is a time-consuming manual process. In contrast, if the results
from an unrefined LFE model are used then whilst a more economical use of material might be achieved through
refining the LFE model, at least the result will be safe.

It is the case that uncertainty quantification is becoming more important in the reporting of numerical results.
The use of dual analysis, where the disc is analyzed using both CFE and LFE models, can provide such uncertainty
quantification for the burst speed. Whilst not offering a formal mathematical proof, through the work undertaken
in the preparation of this paper it has been observed that the stiffness matrix for the LFE element is identical to
that of the CFE element when reduced integration is used. This opens up the possibility of direct mapping between
lower and upper-bound results through a simple post-processing operation and without the need to perform two
analyses.

It is the case in industry that during the initial design of a disc, the burst speed is often predicted based on
the elastic stress field. Whilst there are particular cases of disc geometry where this may be valid, it is easily
demonstrated that this approach is generally invalid and can lead to the unsafe prediction of the plastic burst
speed. It is suggested, therefore, that companies involved in the design of rotating discs might like to consider the
adopting the LFE formulation presented in this paper in the software used for the design of discs.
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